English | 简体中文 | 繁體中文 | Русский язык | Français | Español | Português | Deutsch | 日本語 | 한국어 | Italiano | بالعربية
La agrupación es un aprendizaje no supervisado que coloca objetos similares en el mismo grupo, algo así como una clasificación automática completa, cuanto más similares son los objetos dentro del grupo, mayor es la diferencia entre los objetos de diferentes grupos, mejor es el efecto de agrupación.
1、k均值聚类算法
k均值聚类将数据分为k个簇,每个簇通过其质心,即簇中所有点的中心来描述。首先随机确定k个初始点作为质心,然后将数据集分配到距离最近的簇中。然后将每个簇的质心更新为所有数据集的平均值。然后再进行第二次划分数据集,直到聚类结果不再变化为止。
伪代码为
随机创建k个簇质心
当任意一个点的簇分配发生改变时:
对数据集中的每个数据点:
对每个质心:
计算数据集到质心的距离
将数据集分配到最近距离质心对应的簇
对每一个簇,计算簇中所有点的均值并将均值作为质心
python实现
import numpy as np import matplotlib.pyplot as plt def loadDataSet(fileName): dataMat = [] with open(fileName) as f: for line in f.readlines(): line = line.strip().split('\t') dataMat.append(line) dataMat = np.array(dataMat).astype(np.float)32) return dataMat def distEclud(vecA,vecB): return np.sqrt(np.sum(np.power((vecA-vecB),2)) def randCent(dataSet,k): m = np.shape(dataSet)[1] center = np.mat(np.ones((k,m))) for i in range(m): centmin = min(dataSet[:,i]) centmax = max(dataSet[:,i]) center[:,i] = centmin + (centmax - centmin) * np.random.rand(k,1) return center def kMeans(dataSet,k,distMeans = distEclud,createCent = randCent): m = np.shape(dataSet)[0] clusterAssment = np.mat(np.zeros((m,2)) centroids = createCent(dataSet,k) clusterChanged = True while clusterChanged: clusterChanged = False for i in range(m): minDist = np.inf minIndex = -1 for j in range(k): distJI = distMeans(dataSet[i,:],centroids[j,:]) if distJI < minDist: minDist = distJI minIndex = j if clusterAssment[i,0] != minIndex: clusterChanged = True clusterAssment[i,:] = minIndex,minDist**2 for cent in range(k): ptsInClust = dataSet[np.nonzero(clusterAssment[:,0].A == cent)[0]] centroids[cent,:] = np.mean(ptsInClust,axis = 0) return centroids,clusterAssment data = loadDataSet('testSet.txt') muCentroids, clusterAssing = kMeans(data,4) fig = plt.figure(0) ax = fig.add_subplot(111) ax.scatter(data[:,0],data[:,1],c = clusterAssing[:,0].A) plt.show() print(clusterAssing)
2、二分k均值算法
K均值算法可能会收敛到局部最小值,而非全局最小。一种用于度量聚类效果的指标为误差平方和(SSE)。因为取了平方,更加重视原理中心的点。为了克服k均值算法可能会收敛到局部最小值的问题,有人提出来二分k均值算法。
首先将所有点作为一个簇,然后将该簇一分为二,然后选择所有簇中对其划分能够最大程度减低SSE的值的簇,直到满足指定簇数为止。
伪代码
将所有点看成一个簇
计算SSE
while 当簇数目小于k时:
for 每一个簇:
计算总误差
在给定的簇上进行k均值聚类(k=2)
计算将该簇一分为二的总误差
选择使得误差最小的那个簇进行划分操作
python实现
import numpy as np import matplotlib.pyplot as plt def loadDataSet(fileName): dataMat = [] with open(fileName) as f: for line in f.readlines(): line = line.strip().split('\t') dataMat.append(line) dataMat = np.array(dataMat).astype(np.float)32) return dataMat def distEclud(vecA,vecB): return np.sqrt(np.sum(np.power((vecA-vecB),2)) def randCent(dataSet,k): m = np.shape(dataSet)[1] center = np.mat(np.ones((k,m))) for i in range(m): centmin = min(dataSet[:,i]) centmax = max(dataSet[:,i]) center[:,i] = centmin + (centmax - centmin) * np.random.rand(k,1) return center def kMeans(dataSet,k,distMeans = distEclud,createCent = randCent): m = np.shape(dataSet)[0] clusterAssment = np.mat(np.zeros((m,2)) centroids = createCent(dataSet,k) clusterChanged = True while clusterChanged: clusterChanged = False for i in range(m): minDist = np.inf minIndex = -1 for j in range(k): distJI = distMeans(dataSet[i,:],centroids[j,:]) if distJI < minDist: minDist = distJI minIndex = j if clusterAssment[i,0] != minIndex: clusterChanged = True clusterAssment[i,:] = minIndex,minDist**2 for cent in range(k): ptsInClust = dataSet[np.nonzero(clusterAssment[:,0].A == cent)[0]] centroids[cent,:] = np.mean(ptsInClust,axis = 0) return centroids,clusterAssment def biKmeans(dataSet,k,distMeans = distEclud): m = np.shape(dataSet)[0] clusterAssment = np.mat(np.zeros((m,2)) centroid0 = np.mean(dataSet,axis=0).tolist() centList = [centroid0] for j in range(m): clusterAssment[j,1]) = distMeans(dataSet[j,:],np.mat(centroid0))**2 while (len(centList)<k): lowestSSE = np.inf for i in range(len(centList)): ptsInCurrCluster = dataSet[np.nonzero(clusterAssment[:,0].A == i)[0],:] centroidMat,splitClustAss = kMeans(ptsInCurrCluster,2,distMeans) sseSplit = np.sum(splitClustAss[:,1]) sseNotSplit = np.sum(clusterAssment[np.nonzero(clusterAssment[:,0].A != i)[0],1]) if (sseSplit + sseNotSplit) < lowestSSE: bestCentToSplit = i bestNewCents = centroidMat.copy() bestClustAss = splitClustAss.copy() lowestSSE = sseSplit + sseNotSplit print('the best cent to split is ',bestCentToSplit) # print('the len of the bestClust' bestClustAss[np.nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) bestClustAss[np.nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit clusterAssment[np.nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:] = bestClustAss.copy() centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0] centList.append(bestNewCents[1,:].tolist()[0]) return np.mat(centList),clusterAssment data = loadDataSet('testSet2.txt') muCentroids, clusterAssing = biKmeans(data,3) fig = plt.figure(0) ax = fig.add_subplot(111) ax.scatter(data[:,0],data[:,1],c = clusterAssing[:,0].A,cmap=plt.cm.Paired) ax.scatter(muCentroids[:,0],muCentroids[:,1]) plt.show() print(clusterAssing) print(muCentroids)
Descarga de código y conjuntos de datos:K-means
Este es el contenido completo del artículo, espero que sea útil para su aprendizaje y que todos apoyen a Tutorial de alarido.
Declaración: El contenido de este artículo se ha obtenido de la red, pertenece al autor original, el contenido se ha contribuido y subido por los usuarios de Internet, este sitio web no posee los derechos de propiedad, no ha sido editado por humanos y no asume responsabilidades legales relacionadas. Si encuentra contenido sospechoso de copyright, por favor envíe un correo electrónico a: notice#w3Declaración: El contenido de este artículo se obtiene de la red, es propiedad del autor original, el contenido se contribuye y se carga por los usuarios de Internet, este sitio web no posee los derechos de propiedad, no se ha procesado editorialmente y no asume responsabilidades legales relacionadas. Si encuentra contenido sospechoso de copyright, por favor envíe un correo electrónico a: notice#w