English | 简体中文 | 繁體中文 | Русский язык | Français | Español | Português | Deutsch | 日本語 | 한국어 | Italiano | بالعربية

Ordenación en Pandas

Pandas的排序方式有两种:

按 标签 按实际值

我们看一个下面的示例。

 import pandas as pd
 import numpy as np
 unsorted_df=pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],colu
 mns=['col2','col1'])
 print(unsorted_df)

Resultados de la ejecución:

    col2       col1
1  -2.063177   0.537527
4   0.142932  -0.684884
6   0.012667  -0.389340
2  -0.548797   1.848743
3  -1.044160   0.837381
5   0.385605   1.300185
9   1.031425  -1.002967
8  -0.407374  -0.435142
0   2.237453  -1.067139
7  -1.445831  -1.701035

在unsorted_df中,标签和值未排序。让我们看看如何对它们进行排序。

按标签排序

使用sort_index()方法,通过传递轴参数和排序顺序,可以对DataFrame进行排序。默认情况下,按升序对行标签进行排序。

 import pandas as pd
 import numpy as np
 unsorted_df = pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],colu
    mns = ['col2','col1'])
 sorted_df=unsorted_df.sort_index()
 print(sorted_df)

Resultados de la ejecución:

     col2        col1
9    0.825697    0.374463
8   -1.699509    0.510373
7   -0.581378    0.622958
6   -0.202951    0.954300
5   -1.289321   -1.551250
4    1.302561    0.851385
3   -0.157915   -0.388659
2   -1.222295    0.166609
1    0.584890   -0.291048
0    0.668444   -0.061294

排序的顺序

通过将布尔值传递给升序参数,可以控制排序的顺序。让我们考虑以下示例以了解相同的情况。

 import pandas as pd
 import numpy as np
 unsorted_df = pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],colu
    mns = ['col2','col1'])
 sorted_df = unsorted_df.sort_index(ascending=False)
 print(sorted_df)

Resultados de la ejecución:

     col2        col1
9    0.825697    0.374463
8   -1.699509    0.510373
7   -0.581378    0.622958
6   -0.202951    0.954300
5   -1.289321   -1.551250
4    1.302561    0.851385
3   -0.157915   -0.388659
2   -1.222295    0.166609
1    0.584890   -0.291048
0    0.668444   -0.061294

按行排序

通过将轴参数传递给值0或1,可以在列标签上进行排序。默认情况下,axis = 0 按行排序。让我们考虑以下示例以了解相同的情况。

 import pandas as pd
 import numpy as np
  
 unsorted_df = pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],colu
    mns = ['col2','col1'])
  
 sorted_df=unsorted_df.sort_index(axis=1)
 print(sorted_df)

Resultados de la ejecución:

     col1        col2
1   -0.291048    0.584890
4    0.851385    1.302561
6    0.954300   -0.202951
2    0.166609   -1.222295
3   -0.388659   -0.157915
5   -1.551250   -1.289321
9    0.374463    0.825697
8    0.510373   -1.699509
0   -0.061294    0.668444
7    0.622958   -0.581378

Ordenación por valor

Al igual que con la ordenación de índices, sort_values() es un método de ordenación por valor. Acepta un parámetro 'by', que utiliza el nombre de la columna del DataFrame para ordenar los valores.

import pandas as pd
 import numpy as np
 unsorted_df = pd.DataFrame({'col1':[2,1,1,1],'col2':[1,3,2,4]})
    sorted_df = unsorted_df.sort_values(by='col1')
 print(sorted_df)

Resultados de la ejecución:

   col1  col2
1    1    3
2    1    2
3    1    4
0    2    1

Tenga en cuenta que col1Los valores se ordenarán y los correspondientes col2Los valores y los índices de fila se cambiarán con col1se modifican juntos. Por lo tanto, no parecen clasificados.

'by' Los parámetros utilizan una lista de valores de columna.

 import pandas as pd
 import numpy as np
 unsorted_df = pd.DataFrame({'col1':[2,1,1,1],'col2':[1,3,2,4]})
    sorted_df = unsorted_df.sort_values(by=['col1','col2'])
 print(sorted_df)

Resultados de la ejecución:

  col1 col2
2   1   2
1   1   3
3   1   4
0   2   1

Algoritmos de ordenación

sort_values() Se proporciona una especificación para elegir el algoritmo de mergesort, heapsort y quicksort. Mergesort es el único algoritmo estable.

 import pandas as pd
 import numpy as np
 unsorted_df = pd.DataFrame({'col1':[2,1,1,1],'col2':[1,3,2,4]})
 sorted_df = unsorted_df.sort_values(by='col1',' ,kind='mergesort')
 print(sorted_df)

Resultados de la ejecución:

  col1 col2
1    1    3
2    1    2
3    1    4
0    2    1