English | 简体中文 | 繁體中文 | Русский язык | Français | Español | Português | Deutsch | 日本語 | 한국어 | Italiano | بالعربية
Ejemplo de operación de función de ventana de Pandas
Para manejar datos numéricos, Pandas proporciona algunas variantes, como desplazamiento, expansión y desplazamiento exponencial de ponderación para realizar estadísticas de ventana. Esto incluye sumas, medias, medias móviles, varianza, covarianza, correlación, etc.
Ahora, aprenderemos cómo aplicarlas respectivamente a los objetos DataFrame.
Esta función se puede aplicar a una serie de datos. Especificar el parámetro window = n y aplicar funciones estadísticas adecuadas en su parte superior.
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(10, 4), index = pd.date_range('1/1/2000', periods=10), columns = ['A', 'B', 'C', 'D']) print(df.rolling(window=3).mean())
Los resultados de la ejecución son los siguientes:
A B C D 2000-01-01 NaN NaN NaN NaN 2000-01-02 NaN NaN NaN NaN 2000-01-03 0.434553 -0.667940 -1.051718 -0.826452 2000-01-04 0.628267 -0.047040 -0.287467 -0.161110 2000-01-05 0.398233 0.003517 0.099126 -0.405565 2000-01-06 0.641798 0.656184 -0.322728 0.428015 2000-01-07 0.188403 0.010913 -0.708645 0.160932 2000-01-08 0.188043 -0.253039 -0.818125 -0.108485 2000-01-09 0.682819 -0.606846 -0.178411 -0.404127 2000-01-10 0.688583 0.127786 0.513832 -1.067156
Debido al tamaño de la ventana de3Por lo tanto, para los dos primeros elementos están vacíos, a partir del tercer elemento, su valor es n, n-1y n-2El promedio de los elementos. Por lo tanto, también podemos aplicar las diversas funciones anteriores.
Esta función se puede aplicar a una serie de datos. Especificar el parámetro min_periods = n y aplicar funciones estadísticas adecuadas en su parte superior.
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(10, 4), index = pd.date_range('1/1/2000', periods=10), columns = ['A', 'B', 'C', 'D']) print(df.expanding(min_periods=3).mean())
Los resultados de la ejecución son los siguientes:
A B C D 2000-01-01 NaN NaN NaN NaN 2000-01-02 NaN NaN NaN NaN 2000-01-03 0.434553 -0.667940 -1.051718 -0.826452 2000-01-04 0.743328 -0.198015 -0.852462 -0.262547 2000-01-05 0.614776 -0.205649 -0.583641 -0.303254 2000-01-06 0.538175 -0.005878 -0.687223 -0.199219 2000-01-07 0.505503 -0.108475 -0.790826 -0.081056 2000-01-08 0.454751 -0.223420 -0.671572 -0.230215 2000-01-09 0.586390 -0.206201 -0.517619 -0.267521 2000-01-10 0.560427 -0.037597 -0.399429 -0.376886
ewm Aplicado a una serie de datos. Especifique uno de los parámetros com, span, halflife y aplique la función estadística adecuada en él. Asigna ponderaciones exponenciales.
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(10, 4), index = pd.date_range('1/1/2000', periods=10), columns = ['A', 'B', 'C', 'D']) print(df.ewm(com=0.5).mean())
Los resultados de la ejecución son los siguientes:
A B C D 2000-01-01 1.088512 -0.650942 -2.547450 -0.566858 2000-01-02 0.865131 -0.453626 -1.137961 0.058747 2000-01-03 -0.132245 -0.807671 -0.308308 -1.491002 2000-01-04 1.084036 0.555444 -0.272119 0.480111 2000-01-05 0.425682 0.025511 0.239162 -0.153290 2000-01-06 0.245094 0.671373 -0.725025 0.163310 2000-01-07 0.288030 -0.259337 -1.183515 0.473191 2000-01-08 0.162317 -0.771884 -0.285564 -0.692001 2000-01-09 1.147156 -0.302900 0.380851 -0.607976 2000-01-10 0.600216 0.885614 0.569808 -1.110113
Las funciones de ventana se utilizan principalmente para encontrar tendencias en los datos mediante curvas suaves en un gráfico. Si los datos diarios cambian mucho y hay muchos puntos de datos disponibles, usar muestras y gráficos es un método, y aplicar cálculos de ventana y dibujar en los resultados es otro método. A través de estos métodos, podemos suavizar las curvas o tendencias.